The Kähler-ricci Flow on Surfaces of Positive Kodaira Dimension

نویسندگان

  • Jian Song
  • Gang Tian
چکیده

4 Estimates 9 4.1 The zeroth order and volume estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 A partial second order estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Gradient estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4 The second order estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Measures and Kähler-ricci Flow

We show that the Kähler-Ricci flow on an algebraic manifold of positive Kodaira dimension and semi-ample canonical line bundle converges to a unique canonical metric on its canonical model. It is also shown that there exists a canonical measure of analytic Zariski decomposition on an algebraic manifold of positive Kodaira dimension. Such a canonical measure is unique and invariant under biratio...

متن کامل

The Kähler-ricci Flowon Kähler Surfaces

The problem of finding Kähler-Einstein metrics on a compact Kähler manifold has been the subject of intense study over the last few decades. In his solution to Calabi’s conjecture, Yau [Ya1] proved the existence of a Kähler-Einstein metric on compact Kähler manifolds with vanishing or negative first Chern class. An alternative proof of Yau’s theorem is given by Cao [Ca] using the Kähler-Ricci f...

متن کامل

A Property of Kähler-Ricci Solitons on Complete Complex Surfaces

where Rαβ(x, t) denotes the Ricci curvature tensor of the metric gαβ(x, t). One of the main problems in differential geometry is to find canonical structure on manifolds. The Ricci flow introduced by Hamilton [8] is an useful tool to approach such problems. For examples, Hamilton [10] and Chow [7] used the convergence of the Ricci flow to characterize the complex structures on compact Riemann s...

متن کامل

ar X iv : 0 80 2 . 25 70 v 1 [ m at h . D G ] 1 9 Fe b 20 08 CANONICAL MEASURES AND KÄHLER - RICCI FLOW

We show that the Kähler-Ricci flow on an algebraic manifold of positive Kodaira dimension and semi-ample canonical line bundle converges to a unique canonical metric on its canonical model. It is also shown that there exists a canonical measure of analytic Zariski decomposition on an algebraic manifold of positive Kodaira dimension. Such a canonical measure is unique and invariant under biratio...

متن کامل

The Canonical Class and the C∞ Properties of Kähler Surfaces

We give a self contained proof that for Kähler surfaces with nonnegative Kodaira dimension, the canonical class of the minimal model and the (−1)-curves are oriented diffeomorphism invariants up to sign. This includes the case pg = 0. It implies that the Kodaira dimension is determined by the underlying differentiable manifold. We then reprove that the multiplicities of the elliptic fibration a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006