The Kähler-ricci Flow on Surfaces of Positive Kodaira Dimension
نویسندگان
چکیده
4 Estimates 9 4.1 The zeroth order and volume estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 A partial second order estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Gradient estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4 The second order estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
منابع مشابه
Canonical Measures and Kähler-ricci Flow
We show that the Kähler-Ricci flow on an algebraic manifold of positive Kodaira dimension and semi-ample canonical line bundle converges to a unique canonical metric on its canonical model. It is also shown that there exists a canonical measure of analytic Zariski decomposition on an algebraic manifold of positive Kodaira dimension. Such a canonical measure is unique and invariant under biratio...
متن کاملThe Kähler-ricci Flowon Kähler Surfaces
The problem of finding Kähler-Einstein metrics on a compact Kähler manifold has been the subject of intense study over the last few decades. In his solution to Calabi’s conjecture, Yau [Ya1] proved the existence of a Kähler-Einstein metric on compact Kähler manifolds with vanishing or negative first Chern class. An alternative proof of Yau’s theorem is given by Cao [Ca] using the Kähler-Ricci f...
متن کاملA Property of Kähler-Ricci Solitons on Complete Complex Surfaces
where Rαβ(x, t) denotes the Ricci curvature tensor of the metric gαβ(x, t). One of the main problems in differential geometry is to find canonical structure on manifolds. The Ricci flow introduced by Hamilton [8] is an useful tool to approach such problems. For examples, Hamilton [10] and Chow [7] used the convergence of the Ricci flow to characterize the complex structures on compact Riemann s...
متن کاملar X iv : 0 80 2 . 25 70 v 1 [ m at h . D G ] 1 9 Fe b 20 08 CANONICAL MEASURES AND KÄHLER - RICCI FLOW
We show that the Kähler-Ricci flow on an algebraic manifold of positive Kodaira dimension and semi-ample canonical line bundle converges to a unique canonical metric on its canonical model. It is also shown that there exists a canonical measure of analytic Zariski decomposition on an algebraic manifold of positive Kodaira dimension. Such a canonical measure is unique and invariant under biratio...
متن کاملThe Canonical Class and the C∞ Properties of Kähler Surfaces
We give a self contained proof that for Kähler surfaces with nonnegative Kodaira dimension, the canonical class of the minimal model and the (−1)-curves are oriented diffeomorphism invariants up to sign. This includes the case pg = 0. It implies that the Kodaira dimension is determined by the underlying differentiable manifold. We then reprove that the multiplicities of the elliptic fibration a...
متن کامل